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We examine the problem of a highly polydisperse polymer melt within the framework of the tube model. 
Recent ideas on tube dilation in branched polymers are applied to linear melts when polydispersity is very 
strong. The weight distribution function P (M) and the relaxation modulus G (t) are related by a non-linear 
integral equation. The case of power-law polydispersity, P (M) ~ M-' ,  is examined in detail and relaxation 
moduli, G(t), calculated. When 1 < r < 2, G(t) ~ t - 2 ~  where 7 is related to the polydispersity index z via 

= ( z -  1 ) / ( 2 -  z). 
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Introduction 
Dense polymeric fluids provide us with a rich set of 

physical examples of strongly interacting systems and 
have attracted considerable interest among condensed- 
matter physicists as well as polymer scientists 1. In 
particular their dynamical behaviour is rich, encompassing 
an enormously wide range of time-scales from picosecond 
monomeric collisions to configurational changes of entire 
molecules that may take seconds or longer. The slower 
motions are governed by the topological interactions 
between the polymer chains and are usually understood 
via a dynamical mean-field picture known as the tube 
model 2. In this model the predominant dynamical mode 
of polymer chains at long times is curvilinear diffusion 
(reptation) along their own contours. Lateral motion 
perpendicular to the contour is restricted by an effective 
topological interaction to the radius of the tube, a, which 
is the main parameter of the model. (An equivalent 
measure of the tube often quoted is the effective molecular 
weight between topological constraints of 'entanglement 
molecular weight', Me. ) The tube size amounts to a 
coarse-graining of the polymer to an effective topological 
length, and seems to be a highly co-operative 
phenomenon as tube sizes of 30-100 Aindicate. This size 
range emerges from measurements of the plateau 
modulus and numerical simulation (though the latter is 
hard because of the large time-scale range)3. If a bulk 
strain is communicated affinely to the tubes, stress-decay 
in the melt can be understood by the loss of strained 
chain configurations as the chains diffuse out of their 
original tubes 1'2. For  monodisperse linear polymers 
consisting of N effective monomers of size b each 
contributing a local friction constant of (, this model 
predicts near single exponential behaviour : 

o,,, Oo8   oxp( 
with a characteristic 'reptation time' Trept = (Nab4/ 
r~ZkTa 2 and a plateau modulus Go = 4cb2kT/5a 2 (where 
c is the volume concentration of chains). Experimentally 
we find that Tchar ,,~ N 3"4 and that monodisperse polymer 
melts do exhibit a near-exponential stress-decay. 

However, most polymeric fluids encountered in nature 
and in the laboratory are highly polydisperse and 
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consequently their relaxation spectra are very broad. The 
form of the relaxation of polydisperse melts is not even 
qualitatively understood except in the comparatively 
simple case of a binary blend of two monodisperse 
fractions 4. In this paper we report results of applying 
techniques first developed for branched polymer melts 
to the problem of highly polydisperse linear polymers. 

Since the early success of the model in explaining 
viscoelasticity in this ideal system, including some aspects 
of the non-linear response, effort has been directed in 
three related directions: fluctuations in the effective 
entangled length 5 ; predictions for branched polymers 6'7 ; 
self-consistency in the dynamics of the tube-potential 
itself 4'T. These three problems are closely related because 
the extra topological constraints in branched polymers 
suppress reptation completely and all stress is lost by 
fluctuation of the entangled path length. Moreover, tube 
segments near a branch poi~at relax very much slower 
than segments near an end. At the characteristic 
relaxation time of one of these slow segments, fast 
segments in the neighbourhood cannot act as effective 
topological constraints because their configuration is 
changing so rapidly and any constraints are released 
faster than they are encountered. Instead, fast segments 
act as a solvent for the slow segments and the effective 
tube diameter seen by the slower segments is dilated to 
a larger value. Although both length fluctuation and 
constraint release are important in linear polymers, their 
effects are dominant in branched polymers and also easier 
to study because time-scales for tube relaxation differ so 
widely. 

It is necessary to know the dependence of the tube 
diameter on polymer concentration in order to calculate 
its self-consistent value at any time-scale. In melts and 
concentrated solutions experiments on the concentration 
dependence of the modulus agree with assuming that the 
entanglement spacing depends only on the line density 
of the polymer chain 2 (though dimensional arguments 
have to be used with caution when more than one length 
scale exists s ). Universal behaviour is found such that 

a,~q5 -" (2) 

where ~ is close to 1/2. Combining this dependence with 
the assumption that the effective volume concentration 
q~ is given by the fraction of unrelaxed polymer allows a 



very simple solution to the problem of monodisperse star 
polymers 7. Each tube segment a distance s (in units of 
molecular weight) from the free end has a characteristic 
relaxation time t(s). The fluctuations in arm length can 
be viewed as an activated diffusion against an entropic 
potential 6 U ( s ) = k Tvs 2/MUM, though a self-consistent, 
dynamic value of Me must be used so that Ms "-~ ~b~f t "~ 
[ 1 - s (t) / M ] - 1 giving an ordinary differential equation : 

- = t ( s ) ~ . n  1 -- (3) 

as an approximation to the partial differential equation 
for the distribution function of released segments. The 
relaxation modulus G(t) is then easily calculated from 
s(t) since G(t) 2 ~ ~b~ff. When time-scales for relaxation 
of different parts of a molecule differ widely, this 
approach has been quite successfully applied to a number 
of problems, including the gelation ensemble of branched 
lattice-animals 9. 

This 'tube dilation' approach is not applicable to linear 
polymers in most cases because all tube segments in a 
linear molecule relax on the same characteristic time-scale 
Tr,pr A more appropriate picture is to consider that 
individual constraint release events allow the tube itself 
to behave like a free Gaussian polymer chain undergoing 
Rouse dynamics* with a relaxation function R(t) .  The 
final relaxation modulus is the independent superposition 
of reptation and constraint release so that G ( t ) ~  
i~(t)R(t). The monomeric hopping times for the tube 
must be consistent with the terminal relaxation times of 
the constraining polymers responsible for it. Even in the 
monodisperse case this is a complex problem, and is 
richer still in the case of the binary blend. The binary 
blend also allows us to ask when the reptation time of 
the shorter chains is short enough for the terminal 
relaxation to be correctly given by the 'dilated tube' 
picture in which the short chains act as effective solvent 
for the long. Doi et al. 4 assume that the critical condition 
is that the initial Rouse motion of the tube due to 
constraint release by the short chains must outpace the 
curvilinear motion of the long chains and find: 

- - -  < ~b L (4 )  
M~ 

in the parameter space of the two molecular weights ML 
and M s and the volume fraction of long chains ~b L. 
Recently Rubinstein, Colby and Viovy 4 have modified 
the picture in favour of a more local criterion for 
entanglement. The difficulty arises in the self-consistent 
calculation of the tube segment waiting times. Depending 
on the molecular weights and relative concentrations of 
the two polymers, the terminal relaxation of the longer 
chains may either be dominated by reptative or by Rouse 
dynamics. Again the qualitative form of the relaxation 
modulus can be calculated but it seems prohibitively 
difficult at present to extend the method to cases of broad 
distributions of waiting times such as polydisperse or 
branched polymers. However, in the limit of well- 
separated time-scales of the two components as in (4) 
above (the authors' 'tube reptation' regime), the model 
reduces to the tube dilation prediction. They picture the 
dynamics as equivalent to the original tube of 'fast' 
constraints undergoing reptation within a wider tube of 
"slow' constraints. More general polydisperse systems 
seem at first sight intractable, but if one example of very 
broad polydispersity [binary blends satisfying (4)] 

Relaxation behaviour o f  melts: T. C. B. McLeish 

admits to a tube dilation approach, it is possible that 
other more general examples may be treated approximately 
in the same way. 

Polydisperse linear blends 
When the weight fraction of chains of molecular weight 

M is P (M) we are interested in the functional relationship 
between P ( M )  and the relaxation modulus G(t). This 
has for a long time been of considerable commercial 
interest, as it is known that polymer rheology is more 
sensitive to molecular weight distribution than gel 
permeation chromatography, especially with respect to 
high molecular weight fractions 1°. The problem is that 
the information on P (M) is highly convoluted. Attempts 
have been made by Tuminello 1° to consider the problem 
using the idea of effective solvent but it is clear from the 
case of star polymers that more than a simple 
superposition is involved and that chain dynamics need 
to be calculated self-consistently. Moreover in the 
experiments of Tuminello, rheological data treated with 
the hypothesis of simple superposition consistently gave 
narrower molecular weight distributions than direct 
methods (in this case light scattering). This is just what 
would be expected if a continuous renormalization of 
relaxation times was the result of co-operative dis- 
entanglement: the reptation time of short chains is 
unaffected by the polydispersity but the long chains relax 
faster than they would in a monodisperse melt. 

In polydisperse linear melts the separation of time- 
scales will not come from the activated character of 
fluctuations in entangled path length as in branched 
polymers but instead from the broad distribution of chain 
lengths. For a starting point we look for the analogue 
of the self-consistent equation (3) when the system 
consists of polydisperse linear polymers rather than 
branched polymers with an inherently broad distribution 
of relaxation times. 

We first look for the general consequences of the 
assumption that the effective tube radius at a time t after 
a step strain depends on the effective concentration of 
unrelaxed segments, then consider some specific examples. 
Let #(M, t) be the fraction of original tube length of 
polymers of molecular weight M unrelaxed at time t. If 
monodisperse, this exhibits near exponential decay with 
a characteristic time T,¢pt(M ) ~ M3/a 2. From (2) we 
may write, taking our measure of time such that 
Trept(l ) = 1 in the monodisperse case: 

d g ( M , t )  
d t Y ( M , t ) =  M3 ~beff ( t )  (5 )  

This is the analogy which we sought of the branched 
polymer equation (3) in this case, but needs to be 
accompanied by an expression for the effective dynamic 
concentration (~eff" If we take the limiting assumption of 
widely separated time-scales (which needs careful 
examination but is in all cases an upper bound to the 
relaxation rate) then all relaxed polymer counts as 
solvent and we have 

fo 4~ff ( t ) =  g ( M , t ) P ( M ) d M  (6) 

Solving for g(M, t) from (5) and recasting (6) in terms 
of the variable 2 = 1/M 3 gives a non-linear integral 
equation connecting P ( M )  and 4~ff(t): 
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fo l 1 ~o - 1 )  --,~ q~eff ( t ' )  d r '  d2  (~eff(t) = ~ ) . - 4 / 3 P ( 2  exp 

(7) 
The relaxation modulus follows directly from G(t)= 
Go(~beff) 2. Solving the integral equation is eased by 
noting that if : ( s )  is the Laplace transform of the 
function 2-4/3P(2 - 1 ) with 2 and s as conjugate variables 
and ~ '  its derivative then (7) may itself be recast as a 
non-linear first-order differential equation for ~b~ff (t) : 

dq~eff ( t )  1 ~beff (t)~i~, [_ ~ _  1 (3~eff ( t ) )  ] (8)  
dt 3 

We now examine the validity and results of this approach 
taking the explicit example of power-law polydispersity. 
In this case we have P(M) = (1 - r)M~0~- 1)M -~ where 
the normalization is written in terms of a low-molecular- 
weight cut-off Mo. Clearly z > 1 for integrability of the 
distribution function (the case of z < 1 requires a 
high-molecular-weight cut-off). The first question to 
check is the applicability of entanglement dynamics 
self-consistently throughout the distribution. The degree 
of entanglement is M / M  e (t) ~ (z - 1 )-  1M(2-~) since the 
effective entanglement molecular weight varies inversely 
with the effective concentration. So for the system to 
remain entangled we must have 1 < r < 2 and remark 
that in this regime the polydispersity is extreme in the 
sense that a weight-average molecular weight M w is not 
defined and that the usual polydispersity index Mw/M, 
diverges. For  z > 2 the model may still be appropriate 
for short and intermediate time-scales but the very longest 
modes will represent effectively unconstrained relaxation 
of the largest molecules. The molecular weight character- 
istic of the transition from entangled to unentangled 
behaviour M t depends on both entanglement and cut-off 
molecular weights: M, = [( 1 - z)MeM (1 -~)] 1](2 -t) 

As to the class of distribution functions for which the 
limiting case of dilution might approximate the co- 
operative constraint release, it is not straightforward to 
apply the criteria of Doi et al. 4 from the simple binary 
blend, but a simple condition that must be satisfied for 
a short polymer to act as effective solvent for a longer is 
that 

Tr=pt(Ms) < K'Trcpt(Mi) (9) 

where K'  is some large number, at least of the order of 
10. Using the concentration dependence of the reptation 
time we find that for power-law polydispersity M s < 
K'-1/(4-,), i.e. the separation in the scale of molecular 
weight required is not as severe as that in time-scale and 
the approximation which considers all relaxed polymer 
as effective solvent improves with increased polydispersity 
as the exponent z ~ 1. In the range where entanglement 
dynamics applies throughout, 1 < • < 2, we expect the 
approximation to apply. 

To solve for the relaxation function we use known 
Laplace transforms to find the appropriate form of (8) : 

dq~eff ( t ) d t  ( 1 / )  K(r+z)/(*-l)[c[)¢ff(t)](l+20/(~-') 

(10) 

which may be integrated directly. The constant K 
depends on the polydispersity exponent via K = 
( 1 / 3 ) F [ ( z  -- 1 ) /3].  There are three cases: 

< 2 t~=ff(t) = 1-1 + A ( z ) t ] - ~ ;  

" c - 1  
y = / 2 ~ ) > 0 ;  A('r) > 0 

T > 2 (Pelf(t) = [1 + A(z ) t ] -~ ;  

/' "~ z - 1  
7 = ~ z _ z  ) < 0 ;  A ( z ) < 0  (11) 

z = 2 ~beff(t) = e x p ( - K * t )  

with the surprising result that we may mimic exponential 
decay in one case! The constant A, which depends only 
on the exponent 3, changes sign as z passes through 2: 
A = K (~ + 2 )fir -- l )  ( 2  - z )/3. This permits the entanglement- 
dominated range of relaxation to diverge naturally as the 
disentanglement transition diverges. The regime of 
power-law distributions considered here is also attractive 
because behaviour is not necessarily dominated by 
high- or low-molecular weight cut-offs. Cut-off effects are 
explicit in the range 0 < z < 1 for example. 

Dynamical spectra on simultaneously well-character- 
ized but broadly polydisperse polymer melts are not at 
present to hand. However, near-power-law relaxation 
moduli are commonly observed in melts for which 
Mw/M . is large. For  example, a commercial high-density 
polyethylene with Mw/M, = 8 follows G(t) ,~ t -215 over 
three decades in time 11. This is not inconsistent with a 
value of z < 2 since in practice a high-molecular-weight 
cut-off is always present which will prevent divergence 
of the weight-average molecular weight even for gentle 
power-laws in the range of interest. 

We mention in conclusion the application of this 
approach to analysis. The relation between P(M) and 
G(t) is straightforwardly inverted and may be able to 
furnish an additional quantitative ability to dynamical 
methods of evaluating molecular-weight distributions. 
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